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Abstract

We use the notion of generalized connection over a bundle map in order to present an alternative
approach to sub-Riemannian geometry. Known concepts, such as normal and abnormal extremals,
will be studied in terms of this new formalism. In particular, some necessary and sufficient conditions
for the existence of abnormal extremals will be derived. We also treat the problem of characterizing
those curves that verify both the nonholonomic equations and the so-called vakonomic equations
for a “free” particle submitted to some kinematical constraints.
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1. Introduction

A sub-Riemannian structure on a manifold is a generalization of a Riemannian structure in
that a metric is only defined on a proper vector sub-bundle of the tangent bundle to the man-
ifold (i.e. on a regular distribution), rather than on the whole tangent bundle. As a result, in
sub-Riemannian geometry a notion of length can only be assigned to a certain privileged set
of curves, namely curves that are tangent to the given regular distribution on which the met-
ric is defined. The problem then arises to find those curves that minimize length, among all
curves connecting two given points. The characterization of these length minimizing curves
is one of the main research topics in sub-Riemannian geometry, which has also interesting
links to control theory and to vakonomic dynamics (for the latter, see for instance[7]).

The connection with control theory will be touched upon inSection 2where, without
entering into the details, we will present a formulation of the Maximum Principle, following
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the work of Strichartz[18,19] and Sussmann[20]. This will lead, among others, to the
definition ofnormal andabnormal extremals. The connection with vakonomic dynamics
will be explored inSection 6.

The main goal of this paper is to give an application to sub-Riemannian geometry of
the theory of generalized connections over a bundle map, developed in a previous paper
in collaboration with Cantrijn[4]. In Section 3, we consider some aspects of this theory
in the framework of sub-Riemannian geometry. Then, normal extremals will appear as
“geodesics” and abnormal extremals as “base curves of parallel transported sections” with
respect to a suitable generalized connection associated to the sub-Riemannian structure.
Apart from shedding some new light on certain elements of sub-Riemannian geometry, this
formulation also allows us to prove some known results in an elegant way.

The main subtlety in studying length minimizing curves of a sub-Riemannian structure
lies in the existence of “abnormal minimizers”, i.e. length minimizing abnormal extremals.
Montgomery[15] was the first to construct an explicit example of such abnormal curves.
Since then, many other examples were found, for instance by Liu and Sussmann in[14].
We will deal with this topic inSection 4, where necessary and sufficient conditions for the
existence of abnormal extremals are given.

In this paper, we only consider real, Hausdorff, second countable smooth manifolds,
and by smooth we will always meanC∞. The set of (real-valued) smooth functions on a
manifoldM will be denoted byF(M), the set of smooth vector fields byX(M) and the set
of smooth 1-forms byX∗(M). Let V be a real vector space, andW a subspace, then the
annihilator space ofW is given by

W0 = {β ∈ V ∗|〈β,w〉 = 0 ∀w ∈ W}.
If E is a vector bundle over a manifoldM andF any vector sub-bundle, then the annihilator
bundleF0 of F is the sub-bundle of the dual bundleE∗ of E overM whose fiber over a point
x ∈ M is the annihilator space of the subspaceFx of Ex. The set of smooth (local) sections
of an arbitrary bundleE overM is denoted byΓ(E). In this paper, the domain of a curve
will usually be taken to be a closed (compact) interval inR. Whenever we say that such a
curve, defined on an interval [a, b], is an integral curve of a vector field, we simply mean
that it is the restriction of a maximal integral curve defined on an open interval containing
[a, b].

2. General definitions

In this section, we first give a brief review of some natural objects associated to a
sub-Riemannian structure and we recall the necessary conditions, derived from the Maxi-
mum Principle, for a curve to be length minimizing. Next, we discuss some general aspects
of the theory of connections over a bundle map.

2.1. Sub-Riemannian structures: preliminary definitions

Suppose thatM is a smooth manifold of dimensionn, equipped with a regular distribution
Q ⊂ TM (i.e. Q is a smooth distribution of constant rank, say of rankk). In view of the



B. Langerock / Journal of Geometry and Physics 46 (2003) 203–230 205

regularity,Q can alternatively be regarded as a vector sub-bundle ofTMoverM. The natural
injection i : Q ↪→ TM is then a linear bundle mapping fibered over the identity. A regular
distribution is also completely characterized by its annihilator, i.e. givingQ is equivalent
to specifying the sub-bundleQ0 of the cotangent bundleT ∗M whose fiber overx ∈ M

consists of all co-vectors atx which annihilate all vectors in the subspaceQx of TxM.
A smooth Riemannian bundle metrich on Q is a smooth section of the tensor bundle

Q∗ ⊗Q∗ → M such that it is symmetric and positive definite, i.e. for allXx, Yx ∈ Qx one
has:

h(x)(Xx, Yx) = h(x)(Yx,Xx),

h(x)(Xx,Xx) ≥ 0, and the equality holds iffXx = 0.

With a Riemannian bundle metric one can associate a smooth linear bundle isomorphism
�h : Q → Q∗, Xx �→ h(x)(Xx, ·), fibered over the identity onM, with inverse denoted by
�h := �−1

h : Q∗ → Q.

Definition 1. A sub-Riemannian structure(M,Q, h) is a triple, whereM is a smooth
manifold,Q a smooth regular distribution onM, andh a Riemannian bundle metric onQ.

Although it is not explicitly mentioned in the definition, it will always be tacitly assumed,
as it is customary in sub-Riemannian geometry, thatQ is a nonintegrable distribution and,
therefore, does not induce a foliation ofM. A manifoldM equipped with a sub-Riemannian
structure, will be called asub-Riemannian manifold. With a sub-Riemannian structure
(M,Q, h) one can associate a smooth mappingg : T ∗M → TM defined by

g(αx) = i(�h(i
∗(αx))) ∈ TM,

wherei∗ : T ∗M → Q∗ is the adjoint mapping ofi, i.e. for anyαx ∈ T ∗
x M, i∗(αx) is

determined by〈i∗(αx),Xx〉 = 〈αx, i(Xx)〉 for all Xx ∈ Qx. Clearly,g is a linear bundle
mapping whose image set is precisely the sub-bundleQ of TM and whose kernel is the
annihilatorQ0 of Q. To simplify notations we shall often identify an arbitrary vector inQ

with its image inTM underi and smooth sections ofQ (i.e. elements ofΓ(Q)) will often
be regarded as vector fields onM.

With g we can further associate a sectionḡ of TM ⊗ TM → M according to

ḡ(x)(αx, βx) = 〈g(αx), βx〉
for all x ∈ M andαx, βx ∈ T ∗

x M. From

ḡ(x)(αx, βx) := 〈g(αx), βx〉 = 〈�h(i∗αx), i
∗(βx)〉 = h(x)(�h(i

∗αx), �h(i
∗βx))

= h(x)(g(αx), g(βx)),

we conclude that̄g is symmetric.
LetG be a Riemannian metric onM. It is easily seen that, given a regular distributionQ

onM, we can associate with the metricG a sub-Riemannian structure(M,Q, hG), where
hG is the restriction ofG to the sub-bundleQ, i.e.hG(x)(Xx, Yx) := G(x)(Xx, Yx) for any
x ∈ M andXx, Yx ∈ Qx. Given a sub-Riemannian structure(M,Q, h) and a Riemannian
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metricG on M, we say that the Riemannian metric restricts toh if hG = h. Now, every
sub-Riemannian structure can be seen as being determined (in a nonunique way) by the
restriction of a Riemannian metric. Indeed, leth be a Riemannian bundle metric on a vector
sub-bundleQ of TM, and let{Uα} be an open covering ofM such that, on eachUα, there
exists an orthogonal basis{X1, . . . , Xk} of local sections ofQ with respect toh. Extend this
to a basis of vector fields{X1, . . . , Xn} onUα and define a Riemannian metric onUα by

Gα(x)(Xx, Yx) =
k∑

i,j=1

aibjh(x)(Xi(x),Xj(x)) +
n∑

i=k+1

aibi,

whereXx = aiXi(x) andYx = biXi(x), with ai, bi ∈ R. One can then glue these metrics
together, using a partition of unity sub-ordinate to the given covering{Uα}. This procedure,
which is similar to the one adopted for constructing a Riemannian metric on an arbitrary
smooth manifold (see for instance[2, Proposition 9.4.1]), produces a Riemannian metric
onM which, by construction, restricts toh.

In the sequel, we will repeatedly make use of a Riemannian metricG which restricts to a
given sub-Riemannian metrich. In that connection we now introduce some further notations
and prove some useful relations associated toG andh. The natural bundle isomorphism
betweenTM andT ∗M induced byG will be denoted by�G, with inverse�G = �−1

G . Let
x ∈ M and letXx, Yx ∈ Qx, then one has:

〈i∗�G(i(Xx)), Yx〉 = 〈�G(i(Xx)), i(Yx)〉 = 〈�h(Xx), Yx〉,
which implies that�h = i∗ ◦ �G ◦ i. Inserting this intog ◦ �G ◦ i and taking into account the
definition ofg, we conclude that

g ◦ �G ◦ i = i or g ◦ �G|Q = idQ,

where idQ is the identity mapping onQ. The orthogonal projections ofTM ontoQ and onto
its G-orthogonal complementQ⊥ will be denoted byπ andπ⊥, respectively. Now,T ∗M
can be written as the direct sum of(Q⊥)0 andQ0 and the corresponding projections will
be denoted byτ andτ⊥, respectively. It is easily proven that(Q⊥)0 ∼= �G(Q) and that

τ⊥ = �G ◦ π⊥ ◦ �G, τ = �G ◦ π ◦ �G.

Using the fact thatg ◦ �G|Q = idQ and kerg = Q0, we also have:g = g ◦ τ = π ◦ �G.
To any regular distributionQ on M one can associate a natural tensor field acting on

Q0 ⊗ Q ⊗ Q. Indeed, letη ∈ Γ(Q0), X, Y ∈ Γ(Q) and let [X, Y ] denote the Lie bracket
of X andY , regarded as vector field onM. Then it is easily proven that the expression
〈η, [X, Y ]〉 is F(M)-linear in all three arguments and, therefore, determines a tensorial
object. Now,Q is involutive if and only if this tensor is identically zero. Next, assume that
Y ∈ X(M), with η andX as before, then〈η, [X, Y ]〉 is still F(M)-linear inη andX (but not
in Y ). This justifies the following notation, which will be used later on in our discussion of
the Maximum Principle: for anyx ∈ M, ηx ∈ Q0

x, Xx ∈ Qx and arbitraryY ∈ X(M), put

〈ηx, [Xx, Y ]〉 := 〈η, [X, Y ]〉(x), (1)

where η (resp. X) may be any section ofQ0 (resp. Q) such thatη(x)= ηx (resp.
X(x) = Xx).
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2.2. Necessary conditions for length minimizing curves

For the further discussion in this paper it is important that we give a precise description of
the class of curves we will be dealing with. First of all, by acurvein an arbitrary manifold
P we shall always mean a smooth mapping (in theC∞ sense)c : I → P , with I ⊂ R a
closed interval, and such thatc admits a smooth extension to an open interval containing
I. A mappingc : [a, b] → P will be called apiecewise curvein P if there exists a finite
subdivisiona1 := a < a2 < · · · < ak < ak+1 := b such that the following conditions are
fulfilled:

(1) c is left continuous at each pointai for i = 2, . . . , k + 1, i.e. limt→a−
i
c(t) exists and

equalsc(ai);
(2) limt→a+

i
c(t) is defined for alli = 1, . . . , k and limt→a+

1
c(t) = c(a1) (i.e. c is right

continuous ata1 = a);
(3) for eachi = 1, . . . , k, the mappingci : [ai, ai+1] → P , defined byci(t) = c(t) for

t ∈]ai, ai+1] andci(ai) = lim t→a+
i
c(t), is smooth (i.e. is a curve inP).

A piecewise curve which is continuous everywhere, will simply be called acontinuous
piecewise curve(and corresponds to what is often called in the literature, a piecewise smooth
curve.)

In the sequel, whenever we are dealing with a (continuous) piecewise curvec : [a, b] →
P , the notationci will always refer to the curve defined on theith subinterval of [a, b],
bounded by points wherec fails to be smooth.

Consider now a sub-Riemannian structure(M,Q, h), with associated bundle mapg :
T ∗M → TM. A curve (resp. piecewise curve)c : [a, b] → M is said to betangent to
Q if ċ(t) ∈ Qc(t) for all t ∈ [a, b] (resp. for all t where the derivative exists). Next, let
α : I → T ∗M be a curve inT ∗M and putc = πM ◦ α, with πM : T ∗M → M the natural
cotangent bundle projection. Then, we say thatα is g-admissibleif

g(α(t)) = ċ(t) ∀t ∈ I.

The projected curvec will be called thebase curveof α. If α : I = [a, b] → T ∗M is
a piecewise curve, thenα will be calledg-admissible if its projectionc = πm ◦ α is a
continuous piecewise curve such that, in addition,g(αi(t)) = ċi(t) for t ∈ [ai, ai+1] (where
we have used the notational conventions introduced above). We now prove the following
result which will be of use later on.

Lemma 2. Given a sub-Riemannian structure(M,Q, h) and any curve(resp. continuous
piecewise curve) c in M, tangent to Q. Then, there always exists a g-admissible curve
(resp. piecewise curve) in T ∗M which projects onto c.

Proof. Take a Riemannian metricG which restricts toh onQ. If c : [a, b] → M is a curve
tangent toQ, one can simply putα(t) = �G(ċ(t)) for all t ∈ [a, b]. Clearly,α then defines
ag-admissible curve inT ∗M with base curvec.

Next, assumec : [a, b] → M is a continuous piecewise curve, tangent toQ. We can
then define a piecewise curveα in T ∗M as follows: putα(t) = �G(ċ(t)) for all t, whereċ(t)
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is defined and, using the notational conventions introduced above,α(ai+1) = �G(ċi(ai+1))

for i = 1, . . . , k. It is easy to check that the mappingα : [a, b] → T ∗M thus constructed,
is ag-admissible piecewise curve, projecting ontoc. �

We will now introduce the notion of length of curves, and of continuous piecewise curves,
tangent toQ.

Definition 3. Given a sub-Riemannian structure(M,Q, h), then the length of a curve
c : [a, b] → M, tangent toQ, is given by

L(c) :=
∫ b

a

√
h(c(t))(ċ(t), ċ(t))dt.

Given anyg-admissible curveα in T ∗M with base curvec, and a Riemannian metricG
which restricts toh, then the length ofc still equals

L(c) =
∫ b

a

√
ḡ(c(t))(α(t), α(t))dt =

∫ b

a

√
G(c(t))(ċ(t), ċ(t))dt.

In particular, the value of these integrals do not depend on the specific choice ofα, resp.G.

The above notion of length can be easily extended to the class of continuous piecewise
curvesc, tangent toQ, by puttingL(c) = ∑k

i=1 L(ci).
For the following discussion, which is partially inspired on Sussmann’s[20] approach to

a coordinate-free version of the Pontryagin Maximum Principle, we make two additional
assumptions. First, we assume thatM is pathwise connected, and secondly, we take the
distributionQ of the given sub-Riemannian structure(M,Q, h) to be bracket generating,
i.e. if L(Q) denotes the Lie algebra generated by sections ofQ, regarded as vector fields
onM, then we assume that at each pointx ∈ M, TxM = {X(x)| for allX ∈ L(Q)}.

Both assumptions imply, in particular, that any two points ofM can be joined by a
continuous piecewise curve tangent toQ, as follows from a well-known theorem of Chow
[6]. Therefore, under these assumptions it makes sense to talk about the length minimizing
curve connecting two given points. More precisely, given a continuous piecewise curve
c : [a, b] → M tangent toQ, connecting two pointsx0 andx1 (i.e. c(a) = x0, c(b) = x1),
thenc is calledlength minimizingif L(c) ≤ L(c̃) for any other continuous piecewise curve
c̃ : [a, b] → M tangent toQ, with c̃(a) = x0 andc̃(b) = x1.

Note that, given a continuous piecewise curvec, connecting two pointsx0 andx1, one
can always determine a parameterization ofc such thatc : [0,1] → M, with c(0) = x0,
c(1) = x1, and for which there exists a nonzero constantk such thath(c(t))(ċ(t), ċ(t)) = k

for all t, whereċ(t) is defined. Following Sussmann, we will call this aparameterization by
constant times arc-length.

We now arrive at the following weak version of the Maximum principle.

Theorem 4. Consider a sub-Riemannian structure(M,Q, h) with M connected and Q
bracket generating. Letc : [0,1] → M be a continuous piecewise curve which is length
minimizing, and parameterized by constant times arc-length. Then, there exists a continuous
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piecewise curveψ : [0,1] → T ∗M along c, i.e.πM(ψ(t)) = c(t), which does not intersect
the zero section and such that at least one of the following two conditions is satisfied:

(i) ψ(t) is an integral curve of the Hamiltonian vector fieldXH onT ∗M, with Hamiltonian
given by the smooth functionH(αx) = (1/2)ḡ(x)(αx, αx) for αx ∈ T ∗

x M, which, in
particular, implies that bothψ and c are smooth;

(ii) ψ(t) ∈ Q0 for all t ∈ I, and for any piecewise g-admissible curveα with base curve c,
the following equation holds:

d

dt

∣∣∣∣
t

〈ψ(t),X(c(t))〉 = 〈ψ(t), [g(α(t)), X]〉,

for all X ∈ X(M) and all t ∈ [0,1], whereċ(t) is well defined.

Note that on the right-hand side of the equation in (ii) we have used the notation introduced
in (1). For a derivation of this weak version of the Maximum principle in terms of the more
general class of absolutely continuous curves, we refer to[20]. Inspired on the (local)
analysis presented in[17, p. 79], the proof of the above theorem follows by making some
minor adjustments to the one given in[20].

Definition 5. A continuous piecewise curvec tangent toQ is called a normal (resp. abnor-
mal) extremal if there exists a continuous piecewise curveψ in T ∗M alongc, which does
not intersect the zero section ofT ∗M, satisfying condition (i) (resp. (ii)) ofTheorem 4.

Note that, according to this definition, normal or abnormal extremals do not have to be
length minimizing and thatc can be simultaneously a normal and an abnormal extremal.

2.3. Connections over a bundle map: general setting

Inspired by some recent work of Fernandes[8] on “contravariant connections” in Poisson
geometry and, more generally, connections associated with Lie algebroids (see[9]), we
have recently embarked on the study of a general notion of connection, namely connections
defined over a vector bundle map. This concept covers, besides the standard notions of
linear and nonlinear connections, various generalizations such as partial connections and
pseudo-connections, as well as the Lie algebroid connections considered by Fernandes.
For a detailed treatment we refer to a forthcoming paper, written in collaboration with
Cantrijn and Langerock[4]. After briefly sketching the main idea underlying the notion of a
generalized connection over a vector bundle map, we shall apply this notion of connection
to a sub-Riemannian structure.

LetM be a manifold andν : N → M a vector bundle overM. Assume, in addition, that a
linear bundle mapρ : N → TM is given such thatτM ◦ρ = ν, whereτM : TM → M denotes
the natural tangent bundle projection. Note that we do not requireρ to be of constant rank.
Hence, the image set Imρ need not be a vector sub-bundle ofTM, but rather determines a
generalized distribution as defined by Stefan and Sussmann (see, e.g.[13, Appendix 3]). It
follows thatρ induces a mapping of sections,Γ(N) → X(M) : s �→ ρ ◦ s, also denoted by
ρ. Next, letπ : E → M be an arbitrary fiber bundle overM. We may then consider the



210 B. Langerock / Journal of Geometry and Physics 46 (2003) 203–230

pull-back bundlẽπ1 : π∗N → E, which is a vector bundle overE. Note thatπ∗N may also
be regarded as a fiber bundle overN, with projection denoted bỹπ2 : π∗N → N.

Definition 6. A generalized connection onE over the bundle mapρ (or, shortly, a
ρ-connection onE) is then defined as a linear bundle maph : π∗N → TE from π̃1 to
τE, over the identity onE, such that, in addition, the following diagram is commutative

whereTπ denotes the tangent map ofπ.

The image set Imhdetermines a generalized distribution onE which projects onto Imρ. It is
important to note that Imh may have nonzero intersection with the bundleVEof π-vertical
tangent vectors toE. The standard notion of a connection onE is recovered when putting
N = TM, ν = τM , andρ the identity map. In caseP is a principalG-bundle overM, with
right actionR : P ×G → P , (e, g) �→ R(e, g) = Rg(e)(= eg), aρ-connectionh onP will
be called aprincipal ρ-connectionif, in addition, it satisfies

TRg(h(e, n)) = h(eg, n)

for all g ∈ Gand(e, n) ∈ π∗N. Slightly modifying the construction described by Kobayashi
and Nomizu[11], given a principalρ-connection onP , one can construct aρ-connection
on any associated fiber bundleE.

AssumeE is a vector bundle and let{φt} denote the flow of the canonical dilation vector
field onE. A ρ-connectionh onE is then calleda linearρ-connectionif

Tφt(h(e, n)) = h(φt(e), n)

for all (e, n) ∈ π∗N. In [4], it is shown that such a linearρ-connection can be characterized
by a mapping∇ : Γ(N) × Γ(E) → Γ(E), (s, σ) �→ ∇sσ such that the following properties
hold:

(1) ∇ is R-linear in both arguments;
(2) ∇ isF(M)-linear ins;
(3) for anyf ∈ F(M) and for alls ∈ Γ(N) andσ ∈ Γ(E) one has:∇s(fσ) = f∇sσ + (ρ ◦

s)(f )σ.

It immediately follows that∇sσ(m) only depends on the value ofs atm, and therefore we
may also write it as∇s(m)σ. Clearly,∇ plays the role of the covariant derivative operator in
the case of an ordinary linear connection. Henceforth, we will also refer to the operator∇ as
a linearρ-connection. Letk and7 denote the fiber dimensions ofN andE, respectively, and
let {sα : α = 1, . . . , k}, resp.{σA : A = 1, . . . , 7}, be a local basis of sections ofν, resp.π,
defined on a common open neighborhoodU ⊂ M. We then have∇sασ

A = Γ αA
B σB, for



B. Langerock / Journal of Geometry and Physics 46 (2003) 203–230 211

some functionsΓ αA
B ∈ F(U), called the connection coefficients of the givenρ-connection.

A ρ-connection∇ can be extended to an operator, also denoted by∇, acting on sections of
any tensor product bundle ofE. This can be achieved by applying standard arguments, and
the details are left to the reader. We just like to mention here that the action onF(M) and
Γ(E∗) is determined by the following relations: fors ∈ Γ(N), f ∈ F(M), σ ∈ Γ(E) and
ζ ∈ Γ(E∗),

∇sf := (ρ ◦ s)(f ), ∇s〈σ, ζ〉 = ρ(s)〈σ, ζ〉 = 〈∇sσ, ζ〉 + 〈σ,∇sζ〉.
In order to associate a notion of parallel transport to a linearρ-connection, we first need to
introduce a special class of curves inN. A curvec̃ : I = [a, b] → N is calledρ-admissible
if for all t ∈ I, one haṡc(t) = (ρ◦ c̃)(t), wherec = ν◦ c̃ is the projected curve onM. Curves
in M that are projections ofρ-admissible curves inN are calledbase curves. (We will see
that this terminology is in agreement with the one introduced in the previous section.) Note
that, in principle, a base curve may reduce to a point.

As in standard connection theory, with any linearρ-connection∇ on a vector bundle
π : E → M, and anyρ-admissible curvẽc : [a, b] → N, one can associate an operator
∇c̃, acting on sections ofπ defined along the base curvec = ν ◦ c̃. The operator∇c̃ is
completely determined by the following prescriptions. For arbitrary sectionsσ of π along
c (i.e. curvesσ : [a, b] → E, satisfyingπ ◦ σ = c) and for arbitraryf ∈ F([a, b]):

(1) ∇c̃ is R linear;
(2) ∇c̃fσ = ḟ σ + f∇c̃σ;
(3) ∇c̃σ(t) = ∇c̃(t)σ̄, for σ̄ ∈ Γ(π) such that̄σ(c(t)) = σ(t) for all t ∈ [a, b].

Definition 7. A sectionσ of π, defined along the base curve of aρ-admissible curve
c̃ : [a, b] → N, will be called parallel along̃c if ∇c̃σ(t) = 0 for all t ∈ [a, b].

Taking again{sα}, resp.{σA}, to be a local basis of sections ofν, resp.π, and putting
σ(t) = σA(t)σ

A(c(t)) andc̃(t) = c̃α(t)s
α(c(t)), we find thatσ is parallel along̃c if

∇c̃σ(t) = (α̇A(t) + Γ αB
A (c̃(t))σB(t)c̃α(t))σ

A(c(t)) = 0,

which gives a system of linear differential equations for the components ofσ. Again using
standard arguments, one can show that this leads to a notion of parallel transport onE along
ρ-admissible curves inN (cf. [4] for more details).

Suppose we are given twoρ-admissible curves̃ci : [ai, bi] → N, i = 1,2 with c̃1(b1)

andc̃2(a2) belonging to the same fiber ofν, i.e.c1(b1) = c2(a2), whereci is the base curve
of c̃i. Given any point inEc1(a1)

one can construct a unique parallel section alongc̃1, starting
from that point. The endpoint of this curve (att = b1) lies in the fiberEc2(a2)

and, therefore,
can be taken as the initial point of a unique parallel curve alongc̃2. This construction can
now be easily extended to the class of piecewiseρ-admissible curves defined below.

Recalling the definition of a piecewise curve, given in the previous section, and using
the notational conventions introduced there, apiecewiseρ-admissible curvẽc is defined
as a piecewise curve inN such that: (i) for eachi = 2, . . . , k, c̃i(ai) and c̃i+1(ai) (=
lim t→a+

i
c(t)) belong to the same fiber ofν or, equivalently, the projectionc = ν ◦ c̃ is a

continuous piecewise curve, (ii)ρ(c̃i(t)) = ċi(t) for all i = 1, . . . , k and t ∈ [ai, ai+1].
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Extending the above construction in the case of twoρ-admissible curves̃c1, c̃2, it is now
clear how to determine the notion of parallel transport along a piecewiseρ-admissible curve.

The following class of linearρ-connections will play an important role in the further
analysis.

Definition 8. A linearρ-connection on a vector bundleE is called partial if for anyσ ∈ Γ(E)

andn ∈ ker(ρ), we have∇nσ = 0.

It is instructive to know that the condition for a connection to be partial is equivalent to
the property that no (nonzero) vertical tangent vectors toE exist that are also contained in
Im h, as stated in the following proposition. For the proof, which is quite technical, we refer
to [4].

Proposition 9. Let∇ be a linearρ-connection. Then∇ is partial if and only ifIm h∩VE =
{0}.

3. Connections on a sub-Riemannian structure

Fix a sub-Riemannian structure(M,Q, h) and consider the associated bundle mapg :
T ∗M → TM. In this section, we will be interested in generalized connections onT ∗M
over g. Our main goal is the characterization of normal and abnormal extremals of the
sub-Riemannian structure in terms of such generalized connections. LetU be the domain of
a coordinate chart inM. We will always denote coordinates onU by xi, i = 1, . . . , n. The
coordinates on the corresponding bundle chart ofT ∗M are denoted by(xi, pi), i = 1, . . . , n.

Definition 10. A g-connection on(M,Q, h) is a linear generalized connection onT ∗M
over the bundle mapg : T ∗M → TM.

Comparing with the notations from the previous section, we see that ag-connection on
a sub-Riemannian manifold is a linearρ-connection withN = E = T ∗M andρ = g. Note
that with these identifications, the definition of ag-admissible curve, as given in the context
of sub-Riemannian geometry, agrees with the notion of aρ-admissible curve.

Definition 11. A g-admissible curveα : I → T ∗M is said to be anauto-parallel curve
with respect to ag-connection∇ if it satisfies∇αα(t) = 0 for all t ∈ I. Its base curve
c = π ◦ α is then called a geodesic of∇.

In coordinates, an auto-parallel curveα(t) = (xi(t), pi(t)) satisfies the equations

ẋi(t) = gij (x(t))pj(t), ṗj(t) = −Γ ik
j (x(t))pi(t)pk(t),

wheregij andΓ ik
j ∈ F(U) are the local components of the contravariant tensor fieldḡ

associated to the sub-Riemannian structure (cf.Section 2.1) and the connection coefficients
of ∇, respectively. In fact, given a linearg-connection∇ one can always define a smooth
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vector fieldΓ ∇ onT ∗M whose integral curves are auto-parallel curves with respect to∇.
In canonical coordinates, this vector field reads:

Γ ∇(x, p) = gij (x)pj

∂

∂xi
− Γ ik

j (x)pipk

∂

∂pj

.

A proof of this property follows by standard arguments, and is left to the reader. This implies,
in particular, that given anyα0 ∈ T ∗M, there exists an auto-parallel curveα passing through
α0. Note that it may happen that two different auto-parallel curves correspond to the same
base curve (i.e. may project onto the same geodesic).

Now, we would like to find ag-connection on a sub-Riemannian manifold whose geodesics
are precisely the normal extremals. Recalling the definition of a normal extremal (Definition 5),
it follows that we will have to look for ag-connection∇ for whichΓ ∇ = XH , whereXH de-
notes the Hamiltonian vector field corresponding toH(αx) = (1/2)ḡ(αx, αx) ∈ F(T ∗M).
A first step in that direction is the construction of a symmetric product associated with
a giveng-connection, which fully characterizes the geodesics of theg-connection under
consideration.

Two linearg-connections∇ and∇̄ have the same geodesics if and only the tensor field
D : X ∗(M)⊗X ∗(M) → X ∗(M), (α, β) �→ ∇αβ−∇̄αβ is skew-symmetric, or equivalently
D(α, α) ≡ 0. In local coordinates, the components ofD are given byDij

k = Γ
ij
k − Γ̄

ij
k , where

Γ
ij
k andΓ̄ ij

k are the connection coefficients of∇ and∇̄, respectively. We immediately see that

D is skew-symmetric iffΓ ∇ = Γ ∇̄ , proving the previous statement. Define thesymmetric
productof a connection∇ as

〈α : β〉∇ := ∇αβ + ∇βα for α, β ∈ X ∗(M).

Observe that this is not a tensorial quantity, i.e.〈α : β〉∇ is notF(M)-linear in its arguments.
By replacingα by α + β in D(α, α) the following lemma is easily proven.

Lemma 12. The geodesics of a linear g-connection∇ are completely determined by the
symmetric product〈α : β〉∇ in the sense that, given two g-connections∇ and∇̄, then both
have the same geodesics if and only if〈α : β〉∇ = 〈α : β〉∇̄ for all α, β ∈ X ∗(M).

In the following we shall construct a symmetric bracket of 1-forms, associated to a
sub-Riemannian structure(M,Q, h), which coincides with the symmetric product of a
g-connection∇ onT ∗M iff Γ ∇ = XH .

Before proceeding, we first recall that the Levi–Civita connection∇G associated to an
arbitrary Riemannian metricG is completely determined by the relation:

2G(∇G
XY,Z) = X(G(Y,Z)) + Y(G(X,Z)) − Z(G(X, Y)) + G([X, Y ], Z)

− G([X,Z], Y) − G(X, [Y,Z])

for all X, Y,Z ∈ X(M). This can still be rewritten as

2�G(∇G
XY) = LX�G(Y) + LY �G(X) + �G([X, Y ]) − d(G(X, Y)),
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and the symmetric product of two vector fieldsX, Y , defined by〈X : Y〉∇G = ∇G
XY+∇G

Y X,
then satisfies

�G(〈X : Y〉∇G) = LX�G(Y) + LY �G(X) − d(G(X, Y)).

The right-hand side of this equation now inspires us to propose the following definition of
a symmetric bracket of 1-forms on a sub-Riemannian manifold.

Definition 13. The symmetric bracket associated to a sub-Riemannian structure(M,Q, h)

is the mapping{·, ·} : X ∗(M) × X ∗(M) → X ∗(M) defined by

{α, β} = Lg(α)β + Lg(β)α − d(ḡ(α, β)).

In the following proposition we list some properties of this bracket, the first of which justifies
the denomination “symmetric bracket”. The proofs of these properties are straightforward
and immediately follow from the above definition.

Proposition 14. The symmetric bracket satisfies the following properties: for anyα,

β ∈ X ∗(M)

(1) {α, β} = {β, α};
(2) the bracket isR-bilinear;
(3) {fα, β} = g(β)(f )α + f {α, β} with f ∈ F(M);
(4) {α, η} = Lg(α)η, for anyη ∈ Γ(Q0), and{α, η} = 0 if bothα andη belong toΓ(Q0).

The first three properties justify the following definition.

Definition 15. A g-connection∇ is said to be normal if the associated symmetric product
equals the symmetric bracket, i.e. if〈α : β〉∇ = {α, β} holds for allα, β ∈ X ∗(M).

The connection coefficients of a normalg-connection satisfy the relations

Γ
ij
k + Γ

ji
k = ∂gij

∂xk
∀i, j, k = 1, . . . , n.

We are now going to introduce a special operator, determined by the given distributionQ,
which will play an important role later on.

For that purpose, we first recall that, given a regular involutive distributionD on a man-
ifold M, there exists a canonical connection∇B on the bundleD0 → M over the natural
injectioni : D → TM, sometimes called the “Bott connection”, defined by:∇B

Xη = iX dη,
whereX ∈ Γ(D) and η ∈ Γ(D0). Indeed, under the hypothesis thatD is involutive,
the image of∇B is again an element ofΓ(D0). This connection was used by Bott et al.
[3] to prove, among others, that certain Pontryagin classes of the bundleD0 → M are
identically zero. However, in the setting of a sub-Riemannian structure(M,Q, h), the dis-
tributionQ is assumed not to be involutive and, hence, the 1-formiX dη in general will not
belong toΓ(Q0). Nevertheless, this mapping naturally pops up in our approach to charac-
terize normal and abnormal extremals and, therefore, deserves some special attention. More
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specifically, with any sub-Riemannian structure(M,Q, h) we can associate a mappingδB

according to

δB : Γ(Q) × Γ(Q0) → X ∗(M), (X, η) �→ δBXη = iX dη.

The superscriptB is kept to remind us of the fact that this map reduces to the Bott connection
in the case of involutive distributions.

Definition 16. Given a sub-Riemannian structure(M,Q, h), a g-connection∇ is said to
be adapted to the bundleQ (shortlyQ-adapted) if∇αη = δBg(α)η for all α ∈ X ∗(M) and

η ∈ Γ(Q0).

For the following theorem, recall the notation introduced inSection 2.1for the projection
operators associated with a Riemannian metricG restricting toh, namelyτ : T ∗M →
�G(Q), τ⊥ : T ∗M → Q0.

Theorem 17. Let∇ be a g-connection, then the following statements are equivalent:

(1) ∇ is a normal g-connection;
(2) for all α ∈ X ∗(M) : ∇αα = (1/2){α, α};
(3) 〈∇αX, β〉 + 〈∇βX, α〉 = 〈[g(α),X], β〉 + 〈[g(β),X], α〉 + X(g(α, β)) for all α, β ∈
X ∗(M) andX ∈ X(M);

(4) Γ ∇ = XH or, equivalently, every geodesic of∇ is a normal extremal and vice versa;
(5) let G be a Riemannian metric restricting to h and let∇G be its Levi–Civita connection,

then for allα ∈ X ∗(M), ∇ satisfies:

∇αα = ∇G
g(α)τ(α) + δBg(α)τ

⊥(α).

Note that the right-hand side of (3) agrees with the definition of the symmetrized covariant
derivative considered in[18].

Proof. The equivalence of (1) and (2) follows directly from the definition of a normal
g-connection, and the equivalence of (1) and (3) follows from〈∇αβ,X〉 = g(α)(〈β,X〉) −
〈β,∇αX〉 after some tedious but straightforward calculations.

(2) ⇔ (4). Choose an arbitraryα0 ∈ T ∗M. Let U be a coordinate neighborhood of
x0 = πM(α0) and putα0 = (xi0, p

0
j ). Then,∇αα = (1/2){α, α} implies, in particular, that

the connection coefficientsΓ ij
k of ∇ onU satisfy

Γ
ij
k (x0)p

0
i p

0
j = 1

2

∂gij

∂xk
(x0)p

0
i p

0
j .

The coordinate expression for the Hamiltonian vector fieldXH atα0 equals:

XH(α0) = gij (x0)p
0
j

∂

∂xi

∣∣∣∣
α0

− 1

2

∂gij

∂xk
p0
i p

0
j

∂

∂pk

∣∣∣∣
α0

.

Recalling the definition ofΓ ∇ it is easy to see thatΓ ∇(α0) = XH(α0) for anyα0 ∈ T ∗M
if and only if ∇αα = (1/2){α, α} for eachα ∈ X ∗(M).
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(2) ⇔ (5). LetG be a Riemannian metric restricting toh. Recall the following property
of the Levi–Civita connection∇G:

�G(〈X : Y〉∇G = LX�G(Y) + LY �G(X) − d(G(X, Y)).

PuttingX = Y = g(α), this equation becomes

�G(∇G
g(α)g(α)) = Lg(α)�G(g(α)) − 1

2 d(ḡ(α, α)).

Using the identity�G(g(α)) = τ(α) derived in theSection 2.1, and taking into account that
∇G preserves the metricG, i.e.∇G ◦ �G = �G ◦ ∇G, we obtain

∇G
g(α)τ(α) = Lg(α)τ(α) − 1

2 d(ḡ(α, α)) = 1
2{α, α} − Lg(α)τ

⊥(α).

Sinceτ⊥(α) ∈ Γ(Q0) andg(α) ∈ Γ(Q), the last term on the right-hand side reduces to
δBg(α)τ

⊥(α), which completes the proof. �

Theorem 17implies, in particular, that normalg-connections exist. For instance, the
mapping∇ defined by∇αβ = ∇G

g(α)τ(β) + δBg(α)τ
⊥(β) is a linearg-connection and it is

normal, in view of the equivalence of (1) and (5). Moreover, forβ ∈ Γ(Q0) we find that
∇αβ = δBg(α)β, i.e. the connection under consideration is alsoQ-adapted. Summarizing, we
have shown the following result.

Proposition 18. Given a sub-Riemannian structure(M,Q, h), one can always construct
a normal and a Q-adapted g-connection.

Furthermore, theg-connection constructed gives us a relation between a normalg-
connection, the Levi–Civita connection∇G of any Riemannian metric restricting toh and
the operatorδB. This relation will be very useful when we study the relation between
vakonomic dynamics and nonholonomic mechanics (seeSection 6).

In the following theorem, we shall characterize an abnormal extremal in terms of a
Q-adaptedg-connection. According toDefinition 5, a continuous piecewise curvec tangent
to Q is an abnormal extremal if there exists a continuous piecewise sectionψ of Q0 along
c such that

d

dt

∣∣∣∣
t

〈ψ(t),X(c(t))〉 = 〈ψ(t), [g(α(t)), X]〉 (2)

holds for an arbitrary chosen piecewiseg-admissible curveα projecting ontoc, for any
X ∈ X(M) and for allt, whereċ(t) is defined. We can now state the following interesting
result.

Theorem 19. Given a continuous piecewise curvec : I → M, tangent to Q. There exists a
continuous piecewise section ofQ0 along c which is parallel with respect to a Q-adapted
g-connection if and only if c is an abnormal extremal.

Proof. Recall fromSection 2.2that a continuous piecewise curve onI = [a, b] is defined
as a continuous map which can be regarded as a concatenation of a finite number of curves



B. Langerock / Journal of Geometry and Physics 46 (2003) 203–230 217

ci (i = 1, . . . , k), with domain, say [ai, ai+1] ⊂ I for a1 = a < a2 < · · · < ak < ak+1 = b

and such thatci(ai+1) = ci+1(ai+1).
Let c be an abnormal extremal such that (2) holds. We shall denote the curves associated

to α andψ on the subinterval [ai, ai+1], by αi andψi, respectively. Sinceψ is continuous,
we haveψi(ai+1) = ψi+1(ai+1). Then (2) can equivalently be rewritten as

d

dt

∣∣∣∣
t

〈ψi(t), X(ci(t))〉 = 〈ψi(t), [g(αi(t)), X]〉 ∀t ∈ [ai, ai+1], i = 1, . . . , k.

Now, take aQ-adaptedg-connection∇ (which always exists in view ofProposition 18).
By definition,∇ satisfies∇βη = δBg(β)η for all β ∈ X ∗(M) andη ∈ Γ(Q0). Now, assume
∇βη = 0. This is clearly equivalent to the condition〈∇βη,X〉 = 0 for anyX ∈ X(M)

which, in view of the fact that∇ is Q-adapted, can be rewritten as〈Lg(β)η,X〉 = 0 or
g(β)(〈η,X〉) = 〈η, [g(β),X]〉. Herewith, we have proven that∇βη = 0 iff g(β)(〈η,X〉) =
〈η, [g(β),X]〉 for anyX ∈ X(M). This equivalence can be restated in the following way.
Given ag-admissible curveαi, with base curveci andψi a section ofQ0 alongci, then
∇αiψi(t) = 0 if and only if

d

dt
(〈ψi(t), X(ci(t))〉) = 〈ψi(t), [g(αi(t)), X]〉 ∀X ∈ X(M).

Now, ∇αiψi(t) = 0 for all t ∈ [ai, ai+1] and i = 1, . . . , k, with ψi(ai+1) = ψi+1(ai+1)

implies, by definition, that the continuous piecewise sectionψ of Q0 is parallel with respect
to theQ-adaptedg-connection∇ (seeSection 2.3). This already proves one half of the
theorem.

The proof of the converse statement, namely that the existence of a continuous piecewise
sectionψ of Q0 alongc, satisfying the appropriate conditions, implies thatc is an abnormal
extremal, simply follows by reversing the above arguments. �

To conclude this section we make some further remarks on normal andQ-adapted
g-connections. It is well known that the Levi–Civita connection∇G, associated with a
Riemannian metricG, is uniquely determined by the properties that it preserves the met-
ric, i.e. ∇GG = 0, and that its torsion is zero. We would like to consider now metric
g-connections∇ on a sub-Riemannian manifold, i.e.∇ḡ = 0, whereḡ is the symmet-
ric contravariant 2-tensor field defined inSection 2.1. From above we know that normal
extremals of a sub-Riemannian structure, resp. abnormal extremals, can be characterized
as geodesics of a normalg-connection, resp. as parallel transported sections ofQ0 for a
Q-adaptedg-connection (seeTheorem 17, resp.Theorem 19). Therefore, it is natural to look
for g-connections that are simultaneously normal andQ-adapted. It has been shown above
that such ag-connection always exists, namely∇αβ = ∇G

g(α)τ(β)+ δBg(α)τ
0(β), with G any

Riemannian metric restricting toh. We will prove, however, that no metricg-connection
can be found that is alsoQ-adapted. First we prove an interesting result relating the notion
of partialg-connection (seeDefinition 8) with that of aQ-adapted normalg-connection.

Proposition 20. Let ∇ be a normal g-connection. Then∇ is partial if and only if∇ is
Q-adapted.
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Proof. Let ∇ be a normal g-connection, i.e.∇αβ + ∇βα = {α, β} for all α, β ∈ X ∗(M).
Suppose∇ is partial, then forβ ∈ Γ(Q0) the previous relation becomes

∇αβ = {α, β} = Lg(α)β = δBg(α)β,

i.e.∇ isQ-adapted. Conversely, suppose∇ is normal andQ-adapted, then∇αβ = {α, β}−
∇βα. Let α ∈ Γ(Q0), then the right-hand side of this equation is zero, and thus∇αβ = 0
for all α ∈ Γ(Q0) andβ ∈ X ∗(M). This proves the proposition. �

We will now describe a general method for constructing normalg-connections.
Let [·, ·] : X ∗(M)×X ∗(M) → X ∗(M) denote a skew-symmetric bracket that isR-linear

in both arguments and satisfies, for anyf ∈ F(M), [α, fβ] = g(α)(f )β + f [α, β]. Given
such a bracket onX ∗(M), one can define a unique normalg-connection∇ for which
[α, β] = ∇αβ − ∇βα, namely:

∇αβ = 1
2([α, β] + {α, β}).

Conversely, given a normalg-connection∇, one can define a skew-symmetric bracket with
the desired properties by putting [α, β] = ∇αβ − ∇βα. Henceforth, we shall denote the
bracket associated with a normalg-connection∇ by [α, β]∇ .

As can be easily verified, for ag-connection∇ which is both normal andQ-adapted,
the skew-symmetric bracket satisfies: [α, η]∇ = δBg(α)η for all η ∈ Γ(Q0) andα ∈ X ∗(M).

Therefore, if a Riemannian metricG is chosen, with projectionsτ andτ⊥ on �G(Q) and
Q0, respectively, and which restricts toh, this bracket takes the form:

[α, β]∇ = [τ(α), τ(β)]∇ + δBg(α)τ
⊥(β) − δBg(β)τ

⊥(α).

We only have to know the value of the bracket acting on sections of�G(Q) ∼= Q. For
example, for theg-connection given by∇αβ = ∇G

g(α)τ(β) + δBg(α)τ
⊥(β), the associated

bracket becomes

[α, β]∇ = �G([g(α), g(β)]) + δBg(α)τ
⊥(β) − δBg(β)τ

⊥(α),

where [g(α), g(β)] = Lg(α)g(β) is the usual Lie bracket on vector fields. Note, how-
ever, that there does not seem to exist a “natural” skew-symmetric bracket onX ∗(M),
independent of the chosen Riemannian extensionG of h, which could be used to iden-
tify a “standard”g-connection which is both normal andQ-adapted. One might think of
imposing a metric condition in order to completely determine such a∇, but the follow-
ing result tells us that it is impossible to find aQ-adaptedg-connection which is also
metric.

Proposition 21. A Q-adapted g-connection is not metric.

Proof. Let ∇ be Q-adaptedg-connection. Suppose that∇ leavesḡ invariant. This can
be equivalently rewritten asg(∇αβ) = ∇α(g(β)) for all α, η ∈ X ∗(M). Let η ∈ Γ(Q0),
then, since∇ is Q-adapted this equation becomesg(δBg(α)η) = 0 for all α ∈ X ∗(M)

andη ∈ Γ(Q0). However, this is equivalent to saying thatQ is involutive. Indeed, from
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g(δBg(α)η) = 0 we have

0 = 〈β, g(δBg(α)η)〉 = 〈δBg(α)η, g(β)〉 = −〈η, [g(α), g(β)]〉

for arbitraryα, β ∈ X ∗(M) andη ∈ Γ(Q0), hence [g(α), g(β)] ∈ Γ(Q). �

4. Abnormal extremals

For the remainder of this paper we will always restrict ourselves to curvec that are
immersions, i.e.̇c(t) �= 0 for all t ∈ Dom(c). Such curves can always, at least locally, be
seen as (part of) an integral curve of a smooth vector field (see, e.g.[10, p. 28]). Bearing this in
mind, we will establish in this section a geometrical characterization of abnormal extremals
on a manifold with a regular, nonintegrable distributionQ. First, we will restrict ourselves to
curves that are integral curves of a vector field. Next, we will extend the analysis to general
continuous piecewise curves tangent toQ, whose smooth parts are immersions such that
they can be regarded as a concatenation of integral curves of vector fields belonging toΓ(Q).

Consider a manifoldM equipped with a regular distributionQ. Choose an arbitrary
sub-Riemannian metrich (e.g. the restriction of some Riemannian metric onM) and let∇
be a fixedQ-adaptedg-connection associated to the sub-Riemannian structure(M,Q, h).
(From the previous section we know that such ag-connection can always be found.) Suppose
thatc : I → M is a curve tangent toQ, which is (part of) an integral curve of a vector field
X ∈ Γ(Q), defined on a neighborhood of Im(c). In particular, we have thatċ(t) = X(c(t))

for all t ∈ I. Then we know thatc is an abnormal extremal if there exists a sectionη of Q0

alongc such that∇αη(t) = 0 for all t ∈ I, with α ag-admissible curve with base curvec.
Let {φs} denote the (local) flow ofX such that for any fixedt ∈ [a, b], φs(c(t)) = c(t + s)

for all s for which the right-hand side is defined. We denote the dual of the tangent mapTφs

of φs byT ∗φs, i.e. forα ∈ T ∗
αs(x)

M, T ∗φs(α) is the co-vector atx defined byT ∗φs(α)(Yx) =
α(Tφs(Yx)) for all Yx ∈ TxM (with x ∈ Dom(φs)). We can now prove the following lemma.

Lemma 22. Let c : I → M be an integral curve ofX ∈ Γ(Q) and letη be an arbitrary
section ofQ0 along c. Then, for any g-admissible curveα with base curve c, the following
equation holds:

∇αη(t) = d

ds

∣∣∣∣
s=0

(T ∗φs(η(t + s))) ∀t ∈ I.

Proof. Fix an arbitraryt ∈ I and choose a local coordinate neighborhood ofM containing
the pointc(t). Since∇αη(t) is independent of theg-admissible curveα projecting ontoc, we
can chooseα(t) = ᾱ(c(t)), whereᾱ = �G(X) andG is any Riemannian metric restricting
to h. FromSection 2.1we know thatg(ᾱ) = X, which implies indeed thatα(t) = ᾱ(c(t))

is ag-admissible curve with base curvec. In coordinates,∇αη(t) reads:

∇αη(t) =
(
η̇i(t) + ∂gjk

∂xi
(c(t))αk(t)ηj(t)

)
dxi|c(t).



220 B. Langerock / Journal of Geometry and Physics 46 (2003) 203–230

Since, for fixedt and for sufficiently smalls, the mappings �→ T ∗φs(η(t + s)) defines a
curve in the fiberT ∗

c(t)M, the derivative ats = 0 is well defined and can be identified with
an element ofT ∗

c(t)M. In coordinates this curve is given by

T ∗φs(η(t + s)) = ∂φ
j
s

∂xi
(c(t))ηj(t + s)dxi|c(t),

and its derivative ats = 0 equals

d

ds

∣∣∣∣
s=0

(T ∗φs(η(t + s))) =
(
η̇i(t) + ∂Xj

∂xi
(c(t))ηj(t)

)
dxi|c(t).

Using the fact thatg(ᾱ) = X this leads to the desired result, since

∂Xj

∂xi
(c(t))ηj(t) = ∂(gjkᾱk)

∂xi
(c(t))ηj(t) = ∂gjk

∂xi
(c(t))αj(c(t))ηj(t),

where the second equality follows fromη ∈ Γ(Q0). �

Herewith, we derive the following characterization of an abnormal extremal.

Proposition 23. Letc : I = [a, b] → M be a curve tangent to Q, such that it is an integral
curve of a vector fieldX ∈ Γ(Q) with flow {φs}. Then, c is an abnormal extremal if and
only if there exists a sectionη ofQ0, defined along c, such thatη(t) = T ∗φ−(t−a)(η(a)) for
all t ∈ I.

Proof. According toTheorem 19, c is an abnormal extremal iff there exists a section ofQ0

alongc such that∇αη(t) = 0, with α a g-admissible curve. Using the preceding lemma,
this is still equivalent to

d

ds

∣∣∣∣
s=0

(T ∗φs(η(t + s))) = 0 ∀t ∈ I.

Acting with the mapT ∗φ(t−a) : T ∗
c(t)M → T ∗

c(a)M on both sides of this equation, we obtain
the equivalent condition:

d

dt

∣∣∣∣
t

(T ∗φ(t−a)(η(t))) = 0 ∀t ∈ I

from which it follows thatT ∗φ(t−a)(η(t)) = η(a). �

This characterization of abnormal extremals that are integral curves of a vector field leads
us to the following construction. Letc be a curve tangent toQ, with domainI = [a, b],
such that it is an integral curve of a vector fieldX ∈ Γ(Q). For eacht ∈ I consider the
subsetc∗

t Q of the tangent spaceTc(t)M, given by

c∗
t Q = Span{Tφ−s(Yc(t+s))| ∀Y ∈ Qc(t+s), s ∈ [a − t, b − t]}.

It is immediately verified thatc∗
t Q is in fact a linear subspace ofTc(t)M. Moreover, it is also

easily seen that, for eacht ∈ I ands ∈ [a − t, b − t] : Tφs(c
∗
t Q) = c∗

t+sQ. Therefore, the
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dimension of the linear spacec∗
t Q is independent oft. As an aside of the following theorem

it will follow that c∗
t Q only depends on the set{ċ(s) = X(c(s))|s ∈ [a, b]}.

Theorem 24. Let c be a curve tangent to Q with domainI = [a, b], such that it is an
integral curve ofX ∈ Γ(Q). Then c is an abnormal extremal if and only ifc∗

aQ �= Tc(a)M.

Proof. Suppose thatc∗
aQ �= Tc(a)M, i.e. there exists a nonzeroηa ∈ (c∗

aQ)0 ⊂ T ∗
c(a)M.

Define a curveη in T ∗M alongc by η(t) = T ∗φ−(t−a)(ηa). Note thatη(t) �= 0 for all t. We
now prove thatη(t) ∈ Q0 and, hence,c(t) is an abnormal extremal (seeProposition 23).
For anyYc(t) ∈ Qc(t), we have to show that〈η(t), Yc(t)〉 = 0. By definition ofη(t) this is
indeed the case, since

〈η(t), Yc(t)〉 = 〈ηa, Tφ−(t−a)(Yc(t))〉 and Tφ−(t−a)(Yc(t)) ∈ c∗
aQ.

Conversely, suppose thatc(t) is an abnormal extremal, then, again in view ofProposition 23,
there exists a sectionη of Q0 alongc, which does not intersect the zero section, such that
η(t) = T ∗φ−(t−a)(η(a)). Sinceη(t) ∈ Q0, we then have that〈η(t), Yc(t)〉 = 0 for all t and
for arbitraryYc(t) ∈ Qc(t). This relation can be rewritten as follows:

〈η(t), Yc(t)〉 = 〈η(a), Tφ−(t−a)(Yc(t))〉 = 0,

and, hence, we conclude that 0�= η(a) ∈ (c∗
aQ)0, which completes the proof. �

From the above proof it follows that each element of(c∗
aQ)0 determines a unique section

of Q0 alongc by parallel transport with respect to aQ-adaptedg-connection, and vice
versa. Since for a parallel sectionη of Q0 alongc the equation∇αη(t) = 0 only depends
on the tangent vector to the base curvec, one may indeed conclude that the spacec∗

aQ only
depends on{ċ(t)|; t ∈ [a, b]}.

Remark 25. Given a vector fieldX ∈ Γ(Q) such thatX(c(t)) = ċ(t), consider the
subspace ofTc(a)M spanned byQc(a) and by all tangent vectors of the form [X, [X, . . .

[X, Y ] . . . ](c(a)) for arbitraryY ∈ Γ(Q), and let us denote this space byDc(a). It is not
difficult to prove that the space spanned byDc(a) is contained in (but, in general differs
from) c∗

aQ.

A well-known result concerning abnormal extremals (see, for instance[18]) states that
if Q is “strongly bracket generating”, i.e. ifTxM = Span{Y(x)+ [X, Y ′](x)|Y, Y ′ ∈ Γ(Q)}
for everyx ∈ M andX ∈ Γ(Q), then there are no abnormal extremals. Since Span{Y(x) +
[X, Y ′](x)|Y, Y ′ ∈ Γ(Q)} ⊂ Dc(a), the previous remark shows that this result is compatible
with Theorem 24. At least for the class of curves we are considering here, this result can
even be generalized in the following sense. If for someX ∈ Γ(Q) we have that at every
point x ∈ Dom(X) we haveTxM = Dx, then no integral curve ofX passing trough the
pointx can be an abnormal extremal.

So far, we have only characterized those abnormal extremals that can be regarded as
integral curves of a vector field tangent toQ. We shall now extendTheorem 24to the class
of abnormal extremals that may be continuous piecewise curves.
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Given any curvec : I = [a, b] → M tangent toQ which is an immersion, then there
exists a finite subdivision ofI, such that the restriction ofc to each subinterval is an
integral curve of a vector field tangent toQ (cf. [10, p. 28]). This further implies that,
given any continuous piecewise curvec : I = [a, b] → M tangent toQ, we can apply
this property to each smooth partci : [ai, ai+1] → M of c (for i = 1, . . . , k), where
we are using the conventions ofSection 2.2. More precisely, each sub-curveci can be
regarded by itself as a concatenation of integral curves of (local) vector fields belonging
to Γ(Q). For the sake of clarity, we will now consider the simple case of a continuous
piecewise curve consisting of a concatenation of two integral curves of vector fields tangent
to Q. This will suffice to show how to proceed in the general case of continuous piecewise
curves.

Letc : [a, b] → M be a continuous piecewise curve consisting of two smooth sub-curves
c1 : [a1, a2] → M andc2 : [a2, a3] → M, wherea1 = a < a2 < a3 = b andci(t) = c(t)

for t ∈]ai, ai+1], and whereby we assume that bothc1 andc2 are integral curves of vector
fields X1 ∈ Γ(Q) andX2 ∈ Γ(Q), respectively. Denote the local flow ofXi by {φi

s},
i = 1,2. Sinceċi(t) = Xi(ci(t)) we have:ci(t) = φi

(t−ai)
(ci(ai)), i = 1,2. Consider the

subspacec∗
aQ of Tc(a)M given by

c∗
aQ = (c1)∗aQ + Tφ1

−(a2−a1)
((c2)∗a2

Q),

where the spaces(ci)∗aiQ are defined as above. Assume thatηa ∈ (c∗
aQ)0. Then the contin-

uous piecewise curve inQ0 is defined by

η(t) =



T ∗φ1
−(t−a1)

(ηa) ∀t ∈ [a1, a2],

T ∗φ2
−(t−a2)

(T ∗φ1
−(a2−a1)

(ηa)) ∀t ∈ [a2, a3]

is a parallel transported section ofQ0 with respect to aQ-adapted connection (apply
Proposition 23to c1 and c2). This proves that ifc∗

aQ �= Tc(a)M then c is an abnormal
extremal. Conversely, assume thatc is an abnormal extremal.

By definition there exist parallel transported sectionsη1 andη2 of Q0 alongc1 andc2,
respectively, such thatη1(a2) = η2(a2). Theorem 24implies that 0�= η1(a1) ∈ ((c1)∗a1

Q)0

and 0 �= η2(a2) ∈ ((c2)∗a2
Q)0. Sinceη2(a2) = η1(a2) = T ∗φ1

−(a2−a1)
(η1(a1)), we con-

clude that

0 �= η1(a1) ∈ ((c1)∗a1
Q)0 ∩ (Tφ1

−(a2−a1)
((c2)∗a2

Q))0 = (c∗
aQ)0.

This reasoning can now be easily extended to the case, wherec is a general continuous
piecewise curve tangent toQ (for whichċ(t) �= 0 at all points where the derivative is defined).
Summarizing, we have derived the following characterization of abnormal extremals within
the class of continuous piecewise curves.

Theorem 26. Let c : I = [a, b] → M be a continuous piecewise curve tangent to Q,
with ċ(t) �= 0 at each point where the derivative exists. Then, there always exists a finite
subdivision of I, with endpointsa1 = a < a2 < · · · < a7 < a7+1 = b, such that c is a
concatenation of integral curvesci : [ai, ai+1] → M of vector fieldsXi tangent to Q, with
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flow {φi
s}, i = 1, . . . , 7. We then have that c is an abnormal extremal if and only if

Tc(a)M �= c∗
aQ := (c1)∗a1

Q +
7∑

i=2

Tφ1
−(a2−a1)

· · · Tφi−1
−(ai−ai−1)((c

i)∗aiQ).

Note that, although we have used the theory ofg-connections associated to a sub-Riemannian
structure for its derivation, the above characterization of abnormal extremals is independent
of the choice of a sub-Riemannian metric, but only depends on the geometry of the given
distributionQ. This is indeed in full agreement with the notion of abnormal extremal.

Remark 27. While finalizing this paper, we have come across a recent paper by Piccione
and Tausk[16], in which, following a different approach, a similar characterization for
abnormal extremals was obtained.

We shall now give two examples to illustrate the previous results.

Example 28. Here we consider an example of abnormal extremals, constructed by Mont-
gomery[15]. LetM = R

3−{0}and letQbe the two-dimensional distribution spanned by the
vector fields (expressed in cylindrical coordinates):X1 = ∂/∂r, X2 = ∂/∂θ − F(r)(∂/∂z),
whereF(r) is a function onM with a single nondegenerate maximum atr = 1, i.e.F
satisfies:

d

dr
F(r)

∣∣∣∣
r=1

= 0 and
d2

dr2
F(r)

∣∣∣∣
r=1

< 0.

Such a function can always be constructed (take, for instance,F(r) = (1/2)r2 − (1/4)r4).
The distribution thus defined is everywhere of rank 2, and is differentiable by definition. The
flows ofX1, X2 are denoted by{φs}, {ψs}, respectively. In particular, we haveφt(r, θ, z) =
(t + r, θ, z), ψt(r, θ, z) = (r, θ + t, z − F(r)t). Let c : [0,1] → M be an integral curve of
X1 throughx0 = (r0, θ0, z0) at t = 0. The subspace

c∗
0Q = Span

{
X1(x0),X2(x0),

∂

∂θ

∣∣∣∣
x0

− F(r + t)
∂

∂z

∣∣∣∣
x0

|∀t ∈ [0,1]

}
.

This subspace coincides with the whole tangent space atx, as can be seen from

vr
∂

∂r

∣∣∣∣
x0

+ vθ
∂

∂θ

∣∣∣∣
x0

+ vz
∂

∂z

∣∣∣∣
x0

= vrX1(x0) + vθX2(x0) + vz + vθF(r0)

F(r0 + t) − F(r0)
(X2 − φ∗

t X2)(x0),

wheret is chosen such thatF(r0+ t) �= F(r0). So, in view ofTheorem 24, one can conclude
that an integral curve ofX1 cannot be an abnormal extremal. Letc′ : [0,1] → M be an
integral curve ofX2, with c′(0) = x0 = (r0, θ0, z0). Then we have

c′∗
0 Q = Span

{
X1(x0),X2(x0),

∂

∂r

∣∣∣∣
x0

+ F ′(r0)t
∂

∂z

∣∣∣∣
x0

|∀t ∈ [0,1]

}
.
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If x0 is a point on the cylinder defined byr = 1, then one easily sees thatc′∗
0 Q �= TxM

sinceF ′(1) = 0. Therefore, every helixc′ : [0,1] → R
3 : t �→ (1, θ + t, z − F(1)t) is an

abnormal extremal, i.e. there exists a section ofQ0 along the curvec′ throughx0 = (1,0,0)
such that

η(t) := T ∗ψ−t(F(1)dθ|x + dz|x) = F(1)dθ|(1,t,−F(1)t) + dz|(1,t,−F(1)t).

Example 29. We now treat an example that was constructed by Liu and Sussmann[14].
Let M = R

3 andQ spanned byX1 = ∂/∂x, X2 = (1 − x)(∂/∂y) + x2(∂/∂z), where
we use Cartesian coordinatesx, y, z. The flows{φs} of X1 and {ψs} of X2 are given by
φt(x, y, z) = (x+ t, y, z) andψt(x, y, z) = (x, (1− x)t + y, x2t + z). The pull-back ofX1
underψt equalsψ∗

t X1 = ∂/∂x + t(∂/∂y) − 2xt(∂/∂z), and this vector field can be written
as a linear combination ofX1, X2 for any value oft and at all points for whichx = 0
or 2. Indeed, ifx = 0, thenψ∗

t X1(0, y, z) = X1(0, y, z) + tX2(0, y, z). If x = 2, then
ψ∗

t X1(2, y, z) = X1(2, y, z) − tX2(2, y, z). Therefore, each curve defined byc : I → M :
t �→ (x, (1− x)t + y, x2t + z) for any given point(x, y, z) with x = 0 or 2, is an abnormal
extremal.

To end this section, we present a construction for the tangent vector to certain variations
of a given curvec : [a, b] → M tangent toQ, that have been used in a derivation of the
Maximum Principle in[17]. We shall see that the set of all such tangent vectors determines
a subspace of the tangent spaceTbM that equalsc∗

bQ. Suppose thatc : [a, b] → M is a
curve tangent toQ, which is an integral curve of a vector field with flow{φt}, such that
c(a + t) = φt(c(a)). The type of variations ofc we have in mind here are specified by a
triple (Y, τ, δt) with Y ∈ Γ(Q), τ ∈ [a, b] andδt ≥ 0 ∈ R. Denote the flow ofY by {ψs}.
The variationc̃ : [a, b] × R → M, associated to the triple(Y, τ, δt) for τ ∈]a, b], is then
defined by

c̃(t, ε) =




c(t), a ≤ t ≤ τ − εδt,

ψt−(τ−εδt)(c(τ − εδt)), τ − εδt ≤ t ≤ τ,

φt−τ(ψεδt(c(τ − εδt))), τ ≤ t ≤ b,

which is well defined forε small enough. Forτ = a, a slightly different definition for
c̃ : [a, b] → M is needed:̃c(t, ε) = φt−a(ψεδt(φ−εδt(c(a)))). The tangent vector to any
variationc̃ at (t, ε) = (b,0) equals:

V(Y, τ, δt) = Tφb−τ(δtY(c(τ)) − δtċ(τ)).

SinceY(c(τ)) − ċ(τ) ∈ Qc(τ), the vectorV(Y, τ, δt) belongs toc∗
bQ. Even more, the space

spanned by allV(Y, τ, δt) with Y ∈ Γ(Q), τ ∈ [a, b] and δt ∈ R, equalsc∗
bQ. Therefore,

the necessary and sufficient condition fromTheorem 24measures the dimensionality of the
space spanned by tangent vectors to variations. A more detailed discussion will be presented
in a forthcoming paper in which we will construct a natural connection over a bundle map
associated with a control problem, which will lead to a weaker version of the Maximum
Principle.
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5. Normal extremals

In this section, we will make use ofTheorem 17to recover some known results about
normal extremals. Consider a sub-Riemannian structure(M,Q, h) and letG be an arbitrary
Riemannian metric onM restricting toh. Theorem 17then says∇αα(t) = ∇G

ċ τ(α)(t) +
δBċ τ

⊥(α)(t), whereα is a g-admissible curve with base curvec, and ∇ is any normal
g-connection. This immediately leads to the following result.

Proposition 30. Let c : I → M be a curve tangent to Q that is a geodesic with respect to
a Riemannian metric G restricting to h, then c is a normal extremal.

Proof. The curvec is a normal extremal if there exists ag-admissible curveα with base
curvec, which is auto-parallel with respect to a normalg-connection∇. Sincec : I → M

is a geodesic with respect toG, i.e. ∇G
ċ ċ(t) = 0 ∀t ∈ I, we know fromSection 2.1that

α = �G(c) is ag-admissible curve with base curvec for which τ(α) = α or τ⊥(α) = 0. It
then follows that∇αα(t) = 0 since∇αα(t) = ∇G

ċ τ(α)(t) = �G(∇G
ċ ċ(t)) = 0. �

Let c : I = [a, b] → M be a normal extremal. Then there exists ag-admissible curve
α which is auto-parallel with respect to a normalg-connection. Given anyt0 ∈ I, then
one can always find a 1-form̄α and a compact subintervalJ of I containingt0, such that
ᾱ(c(t)) = α(t) for all t ∈ J andc(J) is contained in a coordinate neighborhoodU. We will
now construct a local Riemannian metricG restricting toh onQ such thatc|J is a geodesic
with respect to this Riemannian metric.

Sinceg(ᾱ) �= 0, one can construct a local basis ofX ∗(U), namely{ᾱ = β1, β2, . . . , βn},
such thatβk+1, . . . , βn determine a local basis forΓ(Q0), defined onU. Let {X1, . . . , Xn}
denote the dual basis ofX(U). Then the vector fieldsXj, for j = 1, . . . , k, form a local basis
for Γ(Q), since〈βi,Xj〉 ≡ 0 for i = k+1, . . . , b. We can now define a Riemannian metric
G onU, restricting toh, as inSection 2.1, i.e. for arbitrary vector fieldsY andZ onU,

G(x)(Y, Z) =
k∑

r,s=1

YrZsh(x)(Xr(x),Xs(x)) +
n∑

r=k+1

YrZr,

where we have putY(x) = YrXr(x) andZ(x) = ZrXr(x) for someYr, Zr ∈ R (r =
1, . . . , n). From the definition ofG we can derive thatQ⊥ is spanned by{Xk+1, . . . , Xn}
or τ⊥(ᾱ) = 0, implying thatτ⊥(α(t)) = 0 or �G(ċ(t)) = α(t). From ∇αα(t) = 0 and
τ⊥(α(t)) = 0 we obtain∇G

ċ ċ(t) = 0 for anyt ∈ J .

Proposition 31. Let c : I → M be a normal extremal. Then for anyt ∈ I there exists a
compact neighborhood J of t such that c restricted to J is a geodesic with respect to some
Riemannian metric restricting to h on Q.

This proves, in particular, that a normal extremal is locally length minimizing.
Let c be a normal extremal and let∇ be a normal andQ-adaptedg-connection (recall

that such a∇ always exists). Suppose thatc is degenerate in the following sense: there
exist twog-admissible curvesα, β with base curvec, such that∇αα(t) = ∇ββ(t) = 0.
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We will now see thatc is then also an abnormal extremal. We have proven before that a
normal andQ-adapted connection is partial, i.e.∇α = ∇β if g(α) = g(β). Therefore, one
obtains that∇α(α − β)(t) = 0. Sinceg(α(t) − β(t)) = 0, orη(t) = (α − β)(t) ∈ Q0 for
all t, η is a parallel transported section alongα, lying entirely inQ0 and, hence,c is an
abnormal extremal. Conversely, assume thatc is a normal extremal, i.e.c is the base curve
of an auto-parallel curveα with respect to∇, and thatc is also an abnormal extremal. Letη

denote a parallel transported section alongα lying in Q0. Then, using the same arguments
as before,α + η is also an auto-parallel curve with base curvec. We can conclude that
curves that are both normal and abnormal are degenerate in the sense that they admit more
than oneg-admissible curve that is auto-parallel.

6. Vakonomic dynamics and nonholonomic mechanics

As a natural consequence of the approach to sub-Riemannian structures in terms of
generalized connections, we will see how to establish coordinate independent conditions
for the motions of a free mechanical system subjected to linear nonholonomic constraints to
be normal extremals with respect to the associated sub-Riemannian structure, and vice versa.
We first give a definition of what we understand under a free mechanical systems subjected
to linear nonholonomic constraints (shortly free nonholonomic mechanical system) and the
associated sub-Riemannian structure.

Assume that a manifoldM is equipped with a nonintegrable regular distributionQ onM

and a Riemannian metricG. A free mechanical system with linear nonholonomic constraint
Q consists of a free particle with LagrangianL(v) = (1/2)G(v, v) ∈ F(TM), subjected to
the constraintv ∈ Q. (“Free” refers here to the absence of external forces.) The problem
of determining thedynamics of the free nonholonomic mechanical systemthen consists in
finding the solutions of the following equation (see[1,5])

π(∇G
ċ ċ(t)) = 0 and ċ(t) ∈ Q ∀t,

whereπ is the orthogonal projection ofTM ontoQ with respect toG and∇G the Levi–
Civita connection associated withG. The associated sub-Riemannian structure is given by
(M,Q, hG), with hG the restriction ofG to Q.

In [12], we have constructed a unique generalized connection∇nh over the bundle map
i : Q ↪→ TM on the linear bundleQ, namely:∇nh

X Y = π(∇G
XY) (we have identifiedX ∈

Γ(Q)) with i ◦X ∈ X(M)). Thei-connection∇nh preserves the sub-Riemannian metrichG

onQ, i.e.∇nh
X hG = 0 for anyX ∈ Γ(Q), and satisfies∇nh

X Y −∇nh
Y X−π[X, Y ] = 0 for all

X, Y ∈ Γ(Q). One can prove that∇nh is completely determined by these two properties.
In this setting, thei-admissible curves are precisely curves tangent toQ. Therefore, a
motion c of the free nonholonomic mechanical system is characterized by the condition
that∇nh

ċ ċ(t) = 0 for all t.
The vakonomic dynamical problem, associated with the free particle with linear non-

holonomic constraints, consists in finding normal extremals with respect to the associated
sub-Riemannian structure(M,Q, hG). It is interesting to compare the solutions o the non-
holonomic mechanical problem with the solutions of the vakonomic dynamical problem,
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because the equations of motion for the mechanical problem are derived by means of
d’Alembert’s principle, whereas the normal extremals are derived from a variational prin-
ciple. This has been discussed for more general Lagrangian systems by Cortés et al.[7].
For the free particle case, we shall present here an alternative (coordinate free) approach.

Definition 32. Given a Riemannian metricG and a regular distributionQ on a manifold
M. We can then define the following two tensorial operators:

ΠG : Γ(Q) ⊗ Γ(Q) → Γ(Q⊥), (X, Y) �→ π⊥(∇G
XY),

ΠB : Γ(Q) ⊗ Γ(Q0) → Γ((Q⊥)0), (X, η) �→ τ(δBXη).

It is indeed easily seen that bothΠG andΠB areF(M)-bilinear in their arguments and,
hence, their action can be defined pointwise, with expressions likeΠG(Xx, Yx) and
ΠB(Xx, ηx), for Xx, Yx ∈ Qx andηx ∈ Q0, having an obvious and unambiguous meaning.

The operatorΠB is related to the “curvature” of the distributionQ as follows: letX, Y ∈
Γ(Q), then one has:

〈ΠB(X, η), Y〉 = 〈δBXη, Y〉 = −〈η, [X, Y ]〉 for anyη ∈ Γ(Q0).

Thus,ΠB ≡ 0 if and only ifQ is involutive. The following lemma shows the importance
of these tensors. First, define a linear connection∇̃B over i : Q ↪→ TM on the bundleQ0

by the prescriptioñ∇B
Xη = τ⊥(δBXη) with X ∈ Γ(Q) andη ∈ Γ(Q0).

Lemma 33. Given a Riemannian metric G and a regular distribution Q on a manifold
M. Assume thatc : I = [a, b] → M is a curve tangent to Q and let∇ be a Q-adapted
g-connection with respect to the associated sub-Riemannian structure(M,Q, hG). Then,
the following properties hold:

(1) GivenYa ∈ Qc(a), denote the parallel transported curves along c, with initial pointYa,
with respect to∇nh, resp.∇G, by Ỹ (t), byY(t). ThenỸ (t) = Y(t) for all t, if and only if
ΠG(ċ(t), Ỹ (t)) = 0 for all t ∈ I.

(2) Givenηa ∈ Q0
c(a), denote the parallel transported curves along c, with initial point

ηa, with respect to∇̃B, resp.∇ by η̃(t), resp.η(t). Then η̃(t) = η(t) if and only if
ΠB(ċ(t), η̃(t)) = 0.

Proof. (1) From the definition ofΠG it follows that, given any sectioñZ(t) of Q alongc,
the following equation holds:∇nh

ċ Z̃(t) = ∇G
ċ Z̃(t) − ΠG(ċ(t), Z̃(t)). Assume that̃Z(t) =

Ỹ (t) = Y(t), then we haveΠG(ċ(t), Ỹ (t)) = 0. This already proves the statement in
direction. The converse follows from the fact that parallel transported curves with respect
to any connection are uniquely determined by their initial conditions.

The proof of (2) follows from similar arguments. �

Note that property (2) of the previous lemma gives necessary and sufficient conditions
for the existence of curves that are abnormal extremals, i.e.:c is an abnormal extremal if
and only if there exists a parallel transported sectionη̃ of Q0 alongc with respect to∇̃B
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such that, in addition,ΠB(ċ(t), η̃(t)) = 0 for all t. We shall now investigate some further
properties of the operatorsΠB andΠG.

Definition 34. Forx ∈ M, letXx be a nonzero element ofQx. Define a subspace ofTxM

as follows:

Qx + [X,Qx] = Span{Y(x) + [X̃, Y ′](x)|Y, Y ′ ∈ Γ(Q); X̃ ∈ Γ(Q)

with X̃(x) = X}.

As a side result of the following lemma, it will be seen that the spaceQx + [X,Qx] is
independent of the extensionx̃ of Xx used in its definition and, hence, also justifies the
notation.

Lemma 35. Letηx ∈ Q0
x andXx ∈ Qx for somex ∈ M. ThenΠB(Xx, ηx) = 0 if and only

if η ∈ (Qx + [X,Qx])0.

Proof. Let ΠB(X, η) = 0. This is equivalent to〈η, [X̃, Y ′](x)〉 = 0 for anyX̃, Y ′ ∈ Γ(Q)

with X̃(x) = Xx. Sinceηx ∈ Q0
x, we may conclude thatηx ∈ (Qx + [X,Qx])0. The

converse follows by reversing the previous arguments. �

Another useful property is given by the following lemma.

Lemma 36. Let M be a manifold with a Riemannian metric G and a regular nonintegrable
distribution Q, and consider the associated sub-Riemannian structure(M,Q, hG). Let ∇
be a normal g-connection. We then have forα ∈ X ∗(M) that∇αα = 0 if and only if

�G(∇nh
g(α)g(α)) = −ΠB(g(α), τ⊥(α)) and ∇̃B

g(α)τ
⊥(α) = −�G(ΠG(g(α), g(α))).

Proof. FromTheorem 17one has that∇αα = 0 if and only if∇G
g(α)τ(α)+ δBg(α)τ

⊥(α) = 0.
Using the following relations:

τ(α) = �G(g(α)), ∇G ◦ �G = �G ◦ ∇G,

∇G
g(α)g(α) = ∇nh

g(α)g(α) + ΠG(g(α), g(α)),

δBg(α)τ
0(α) = ∇̃B

g(α)τ
0(α) + ΠB(g(α), τ0(α))

together with the fact thatT ∗M = �G(Q) ⊕ Q0 andQ0 ∼= �G(Q⊥), the equivalence is
immediately proven. �

The previous lemmas can now be used to derive necessary and sufficient conditions
for a motion of a free nonholonomic mechanical system to be normal extremals and vice
versa. LetM again be a manifold with a Riemannian metricG and a regular nonintegrable
distributionQ.

Proposition 37. A solutionc : [a, b] → M of a free nonholonomic system determined by
the triple(M,Q,G) is a solution of the corresponding vakonomic problem, and vice versa,
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if and only if there exists a sectionη of Q0 along c such that

∇̃B
ċ η(t) = −�G(ΠG(ċ(t), ċ(t))), (3)

and such that, in additionη(t) ∈ (Qc(t) + [ċ(t),Qc(t)])0 for all t.

Proof. The condition for anyg-admissible curveα(t) = �G(ċ(t)) + η(t) with base curvec
(whereη(t) is any section ofQ0 alongc) to be parallel transported with respect to a normal
g-connection is that∇αα(t) = 0. This can equivalently be written as

�G(∇nh
ċ ċ(t)) = −ΠB(ċ(t), η(t)) and ∇̃B

ċ η(t) = −�G(ΠG(ċ(t), ċ(t))).

Thus,∇nh
ċ ċ(t) = 0 if and only ifΠB(ċ(t), η(t)) = 0, whereη(t) is a solution of∇̃B

ċ η(t) =
−�G(ΠG(ċ(t), ċ(t))). �

Remark 38. Given anyη0 in (Qc(a)+[ċ(a),Qc(a)])0 then (3) always admits a solution,η(t)

with initial conditionη(a) = η0. The obstruction forc to be simultaneously a motion of the
nonholonomic mechanical system and a solution to the vakonomic dynamical problem, lies
in the fact thatη(t) should belong to(Qc(t) + [ċ(t),Qc(t)])0 for all t, this is not guaranteed
by the fact thatη(t) is a solution of (3). The search for geometric conditions for solutions
η(t) of this equation to remain in(Qc(t) + [ċ(t),Qc(t)])0 for all t, is left for future work.
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